Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Basic study on seismic respnse of soil-structure interaction system using equivalent linear three-dimensional FEM analysis of reactor building

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi

Kozo Kogaku Rombunshu, B, 68B, p.271 - 283, 2022/04

This paper aims to evaluate the applicability of the equivalent linear analysis method for reinforced concrete, which uses frequency-independent hysteretic damping, to the seismic design of reactor building of the nuclear power plant. To achieve this, we performed three-dimensional FEM analyses of the soil-structure interaction system, focusing on the nonlinear and equivalent linear seismic behavior of a reactor building under an ideal soil condition. From these results, the method of equivalent analysis showed generally good correspondence with the method of the nonlinear analysis, confirming the effectiveness. Moreover, the method tended to lower the structural stiffness compared to the nonlinear analysis model. Therefore, in the evaluation of the maximum shear strain, we consider that the results were more likely to be higher than the results of nonlinear analysis.

Journal Articles

3D FEM soil-structure interaction analysis for Kashiwazaki-Kariwa Nuclear Power Plant considering soil separation and sliding

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Moritani, Hiroshi*; Choi, B.; Nishida, Akemi

Frontiers in Built Environment (Internet), 7, p.676408_1 - 676408_14, 2021/06

The objective of this study is the improvement of response evaluations of structures, facilities and equipment in evaluation of three-dimensional seismic behavior of nuclear power plant facilities, by three-dimensional finite element method model, including separation and sliding between the soil and the basement walls. To achieve this, simulation analyses of Kashiwazaki Kariwa nuclear power plant unit 7 reactor building under the 2007 Niigataken-chuetsu-oki earthquake event were carried out. These simulation analyses consider soil-structure interaction using a three-dimensional finite element method model in which the soil and building are three-dimensionally modeled by the finite element method. It is found that basemat uplift is generated on east side of the basemat edge, and this has an important influence on the results. The importance is evidenced by the difference of local response in soil pressure characteristics beneath the edge of basemat, the soil pressure characteristics along the east side of basement wall and the maximum acceleration response at the west end of the embedded surface. Although, in this particular study, basemat uplift, separation and sliding have only a relatively small influence on the maximum acceleration response of embedded surface and the soil pressure characteristics along the basement walls and beneath the basemat, under strong earthquake motion, these influences can be significant, therefore appropriate evaluation of this effect should be considered.

Journal Articles

Soil-structure interaction analysis of HTTR building by a finite element model

; Suzuki, Hideyuki; *

IWGGCR-22, p.60 - 66, 1990/00

no abstracts in English

Journal Articles

Soil-structure interaction analysis of HTTR building by a simplified model

*; Suzuki, Hideyuki;

IWGGCR-22, p.52 - 59, 1990/00

no abstracts in English

Oral presentation

Basic study on seismic response of soil-structure interaction system using equivalent linear three-dimensional fem analysis of reactor building

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi

no journal, , 

This study aims to evaluate the applicability of the equivalent linear analysis method for reinforced concrete, which uses frequency-independent hysteretic damping, to the seismic design of reactor building of the nuclear power plant. To achieve this, we performed three-dimensional FEM analyses of the soil-structure interaction system, focusing on the nonlinear and equivalent linear seismic behavior of a reactor building under an ideal soil condition. From these results, the method of equivalent analysis showed generally good correspondence with the method of the nonlinear analysis, confirming the effectiveness. Moreover, the method tended to lower the structural stiffness compared to the nonlinear analysis model. Therefore, in the evaluation of the maximum shear strain, we consider that the results were more likely to be higher than the results of nonlinear analysis. In this presentation, we describe the effectiveness and problems of the equivalent linear analysis method using three-dimensional FEM analysis of the soil-structure interaction system.

5 (Records 1-5 displayed on this page)
  • 1